Paper ID | HLT-7.6 |
Paper Title |
AN EMPIRICAL STUDY OF END-TO-END SIMULTANEOUS SPEECH TRANSLATION DECODING STRATEGIES |
Authors |
Ha Nguyen, Université Grenoble Alpes, France; Yannick Estève, Avignon Université, France; Laurent Besacier, Université Grenoble Alpes, France |
Session | HLT-7: Speech Translation 1: Models |
Location | Gather.Town |
Session Time: | Wednesday, 09 June, 14:00 - 14:45 |
Presentation Time: | Wednesday, 09 June, 14:00 - 14:45 |
Presentation |
Poster
|
Topic |
Human Language Technology: [HLT-MTSW] Machine Translation for Spoken and Written Language |
IEEE Xplore Open Preview |
Click here to view in IEEE Xplore |
Virtual Presentation |
Click here to watch in the Virtual Conference |
Abstract |
This paper proposes a decoding strategy for end-to-end simultaneous speech translation. We leverage end-to-end models trained in offline mode and conduct an empirical study for two language pairs (English-to-German and English-to-Portuguese). We also investigate different output token granularities including characters and Byte Pair Encoding (BPE) units. The results show that the proposed decoding approach allows to control BLEU/Average Lagging trade-off along different latency regimes. Our best decoding settings achieve comparable results with a strong cascade model evaluated on the simultaneous translation track of IWSLT 2020 shared task. |