2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDMLSP-13.3
Paper Title OPTIMAL IMPORTANCE SAMPLING FOR FEDERATED LEARNING
Authors Elsa Rizk, Stefan Vlaski, Ali H. Sayed, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
SessionMLSP-13: Federated Learning 2
LocationGather.Town
Session Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-DFED] Distributed/Federated learning
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Federated learning involves a mixture of centralized and decentralized processing tasks, where a server regularly selects a sample of the agents, and these in turn sample their local data to compute stochastic gradients for their learning updates. The sampling of both agents and data is generally uniform; however, in this work we consider non-uniform sampling. We derive optimal importance sampling strategies for both agent and data selection and show that under convexity and Lipschitz assumptions, non-uniform sampling without replacement improves the performance of the original FedAvg algorithm. We run experiments on a regression and classification problem to illustrate the theoretical results.