2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDSPE-9.3
Paper Title CAPTURING MULTI-RESOLUTION CONTEXT BY DILATED SELF-ATTENTION
Authors Niko Moritz, Takaaki Hori, Jonathan Le Roux, Mitsubishi Electric Research Laboratories (MERL), United States
SessionSPE-9: Speech Recognition 3: Transformer Models 1
LocationGather.Town
Session Time:Tuesday, 08 June, 16:30 - 17:15
Presentation Time:Tuesday, 08 June, 16:30 - 17:15
Presentation Poster
Topic Speech Processing: [SPE-LVCR] Large Vocabulary Continuous Recognition/Search
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Self-attention has become an important and widely used neural network component that helped to establish new state-of-the-art results for various applications, such as machine translation and automatic speech recognition (ASR). However, the computational complexity of self-attention grows quadratically with the input sequence length. This can be particularly problematic for applications such as ASR, where an input sequence generated from an utterance can be relatively long. In this work, we propose a combination of restricted self-attention and a dilation mechanism, which we refer to as dilated self-attention. The restricted self-attention allows attention to neighboring frames of the query at a high resolution, and the dilation mechanism summarizes distant information to allow attending to it with a lower resolution. Different methods for summarizing distant frames are studied, such as subsampling, mean-pooling, and attention-based pooling. ASR results demonstrate substantial improvements compared to restricted self-attention alone, achieving similar results compared to full-sequence based self-attention with a fraction of the computational costs.