2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDIVMSP-13.6
Paper Title Self-Convolution: A Highly-Efficient Operator for Non-Local Image Restoration
Authors Lanqing Guo, Zhiyuan Zha, Nanyang Technological University, Singapore; Saiprasad Ravishankar, Michigan State University, United States; Bihan Wen, Nanyang Technological University, Singapore
SessionIVMSP-13: Image Enhancement and Restoration
LocationGather.Town
Session Time:Wednesday, 09 June, 15:30 - 16:15
Presentation Time:Wednesday, 09 June, 15:30 - 16:15
Presentation Poster
Topic Image, Video, and Multidimensional Signal Processing: [IVTEC] Image & Video Processing Techniques
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Constructing effective image priors is critical to solving ill-posed inverse problems, such as image restoration. Recent works proposed to exploit image non-local similarity for inverse problems by grouping similar patches, and demonstrated state-of-the-art results in many applications. However, comparing to classic local methods based on filtering or sparsity, most of the non-local algorithms are time-consuming, mainly due to the highly inefficient and redundant block matching step, where the distance between each pair of overlapping patches needs to be computed. In this work, we propose a novel Self-Convolution operator to exploit image non-local similarity in a self-supervised way. The proposed Self-Convolution can generalize the commonly-used block matching step, and produce the equivalent results with much cheaper computation. Based on Self-Convolution, we propose an effective multi-modality image restoration scheme, which is much more efficient than conventional block matching for non-local modeling. Experimental results also demonstrate that Self-Convolution can significantly speed up most of the popular non-local image restoration algorithms, with two-fold to nine-fold faster block matching. The codes will be released on GitHub.