2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDAUD-30.1
Paper Title CROSS-MODAL SPECTRUM TRANSFORMATION NETWORK FOR ACOUSTIC SCENE CLASSIFICATION
Authors Yang Liu, University of Surrey, United Kingdom; Alexandros Neophytou, Sunando Sengupta, Eric Sommerlade, Microsoft, United Kingdom
SessionAUD-30: Detection and Classification of Acoustic Scenes and Events 5: Scenes
LocationGather.Town
Session Time:Friday, 11 June, 13:00 - 13:45
Presentation Time:Friday, 11 June, 13:00 - 13:45
Presentation Poster
Topic Audio and Acoustic Signal Processing: [AUD-CLAS] Detection and Classification of Acoustic Scenes and Events
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Convolutional neural networks (CNNs) with log-mel spectrum features have shown promising results for acoustic scene classification tasks. However, the performance of these CNN based classifiers is still lacking as they do not generalise well for unknown environments. To address this issue, we introduce an acoustic spectrum transformation network where traditional log-mel spectrums are transformed into imagined visual features (IVF). The imagined visual features are learned by exploiting the relationship between audio and visual features present in video recordings. An auto-encoder is used to encode images as visual features and a transformation network learns how to generate imagined visual features from log-mel. Our model is trained on a large dataset of Youtube videos. We test our proposed method on the scene classification task of DCASE and ESC-50, where our method outperforms other spectrum features, especially for unseen environments.