Paper ID | SPE-49.6 |
Paper Title |
DENOISPEECH: DENOISING TEXT TO SPEECH WITH FRAME-LEVEL NOISE MODELING |
Authors |
Chen Zhang, Yi Ren, Zhejiang University, China; Xu Tan, Microsoft Research Asia, China; Jinglin Liu, Kejun Zhang, Zhejiang University, China; Tao Qin, Microsoft Research Asia, China; Sheng Zhao, Microsoft Azure Speech, China; Tie-Yan Liu, Microsoft Research Asia, China |
Session | SPE-49: Speech Synthesis 7: General Topics |
Location | Gather.Town |
Session Time: | Friday, 11 June, 11:30 - 12:15 |
Presentation Time: | Friday, 11 June, 11:30 - 12:15 |
Presentation |
Poster
|
Topic |
Speech Processing: [SPE-SYNT] Speech Synthesis and Generation |
IEEE Xplore Open Preview |
Click here to view in IEEE Xplore |
Virtual Presentation |
Click here to watch in the Virtual Conference |
Abstract |
While neural-based text to speech (TTS) models can synthesize natural and intelligible voice, they usually require high-quality speech data, which is costly to collect. In many scenarios, only noisy speech of a target speaker is available, which presents challenges for TTS model training for this speaker. Previous works usually address the challenge using two methods: 1) training the TTS model using the speech denoised with an enhancement model; 2) taking a single noise embedding as input when training with noisy speech. However, they usually cannot handle speech with real-world complicated noise such as those with high variations along time. In this paper, we develop DenoiSpeech, a TTS system that can synthesize clean speech for a speaker with noisy speech data. In DenoiSpeech, we handle real-world noisy speech by modeling the fine-grained frame-level noise with a noise condition module, which is jointly trained with the TTS model. Experimental results on real-world data show that DenoiSpeech outperforms the previous two methods by 0.31 and 0.66 MOS respectively. |