2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDIVMSP-16.3
Paper Title DYNAMIC POINT CLOUD COMPRESSION USING A CUBOID ORIENTED DISCRETE COSINE BASED MOTION MODEL
Authors Ashek Ahmmed, Manoranjan Paul, Charles Sturt University, Australia; Manzur Murshed, FAU, Australia; David Taubman, University of New South Wales, Australia
SessionIVMSP-16: Point Clouds and Depth
LocationGather.Town
Session Time:Wednesday, 09 June, 15:30 - 16:15
Presentation Time:Wednesday, 09 June, 15:30 - 16:15
Presentation Poster
Topic Image, Video, and Multidimensional Signal Processing: [IVCOM] Image & Video Communications
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Immersive media representation format based on point clouds has underpinned significant opportunities for extended reality applications. Point cloud in its uncompressed format require very high data rate for storage and transmission. The video based point cloud compression technique projects a dynamic point cloud into geometry and texture video sequences. The projected texture video is then coded using modern video coding standard like HEVC. Since the properties of projected texture video frames are different from traditional video frames, HEVC-based commonality modeling can be inefficient. An improved commonality modeling technique is proposed that employs discrete cosine basis oriented motion models and the domains of such models are approximated by homogeneous regions called cuboids. Experimental results show that the proposed commonality modeling technique can yield savings in bit rate of up to 4.17%.