2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDAUD-15.6
Paper Title Speech Enhancement Using Masking for Binaural Reproduction of Ambisonics Signals
Authors Moti Lugasi, Boaz Rafaely, Ben-Gurion University of the Negev, Israel
SessionAUD-15: Modeling, Analysis and Synthesis of Acoustic Environments 1: Soundfield Acquisition and Reproduction
LocationGather.Town
Session Time:Wednesday, 09 June, 16:30 - 17:15
Presentation Time:Wednesday, 09 June, 16:30 - 17:15
Presentation Poster
Topic Audio and Acoustic Signal Processing: [AUD-SARR] Spatial Audio Recording and Reproduction
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Speech enhancement in a single channel has been well studied in the literature in many applications. However, in emerging applications such as virtual reality, in addition to attenuating undesired signals, the ability to preserve the spatial information of the desired signal captured in a noisy environment is of great importance. Nevertheless, there are only a few studies in the literature that propose solutions to this challenge. Most of these studies present solutions that attenuate the undesired signals, while preserving only limited spatial information regarding the desired signal. Methods that preserve complete spatial information have only recently been suggested, and have not been studied comprehensively. In this paper, two such methods based on time-frequency masking are investigated with the aim of attenuating the undesired signal, while preserving the spatial components of the desired signal. The first is referred to as spatial masking and is based on masking in the plane wave density domain, and the second on masking in the spherical harmonics (SH) domain. The two methods are compared with a reference method, based on beamforming followed by single-channel time-frequency masking. Objective analysis and two listening tests were conducted in order to evaluate the performance of these methods for speech enhancement.