2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDSPTM-3.1
Paper Title COOPERATIVE PARAMETER ESTIMATION ON THE UNIT SPHERE USING A NETWORK OF DIFFUSION PARTICLE FILTERS
Authors Caio de Figueredo, Instituto Tecnológico de Aeronáutica, Brazil; Claudio Bordin, Universidade Federal do ABC, Brazil; Marcelo Bruno, Instituto Tecnológico de Aeronáutica, Brazil
SessionSPTM-3: Estimation, Detection and Learning over Networks 1
LocationGather.Town
Session Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Poster
Topic Signal Processing Theory and Methods: [SSP] Statistical Signal Processing
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract We introduce in this paper novel Bayesian distributed estimation algorithms for tracking the hidden state of a system that evolves on a spherical manifold. In the proposed method, different nodes on a partially-connected network run particle filters (PFs) that assimilate local data and cooperate with their neighbors via Random Exchange (RndEx) and Adapt-then-Combine (ATC) diffusion techniques. To implement the diffusion filters, we introduce parametric approximations that abide by the geometric restrictions imposed on the state variables. Numerical simulations show that the proposed methodology outperforms equivalent non-cooperative PF algorithms and competing extended Kalman Filter (EKF) approaches.