2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDAUD-12.4
Paper Title FLOW-BASED SELF-SUPERVISED DENSITY ESTIMATION FOR ANOMALOUS SOUND DETECTION
Authors Kota Dohi, Takashi Endo, Harsh Purohit, Ryo Tanabe, Yohei Kawaguchi, Hitachi, Ltd., Japan
SessionAUD-12: Detection and Classification of Acoustic Scenes and Events 1: Few-shot learning
LocationGather.Town
Session Time:Wednesday, 09 June, 15:30 - 16:15
Presentation Time:Wednesday, 09 June, 15:30 - 16:15
Presentation Poster
Topic Audio and Acoustic Signal Processing: [AUD-CLAS] Detection and Classification of Acoustic Scenes and Events
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract To develop a machine sound monitoring system, a method for detecting anomalous sound is proposed. Exact likelihood estimation using Normalizing Flows is a promising technique for unsupervised anomaly detection, but it can fail at out-of-distribution detection since the likelihood is affected by the smoothness of the data. To improve the detection performance, we train the model to assign higher likelihood to target machine sounds and lower likelihood to sounds from other machines of the same machine type. We demonstrate that this enables the model to incorporate a self-supervised classification-based approach. Experiments conducted using the DCASE 2020 Challenge Task2 dataset showed that the proposed method improves the AUC by 4.6% on average when using Masked Autoregressive Flow (MAF) and by 5.8% when using Glow, which is a significant improvement over the previous method.