2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDSPE-43.6
Paper Title TOWARDS DATA SELECTION ON TTS DATA FOR CHILDREN'S SPEECH RECOGNITION
Authors Wei Wang, Zhikai Zhou, Yizhou Lu, Hongji Wang, Chenpeng Du, Yanmin Qian, Shanghai Jiao Tong University, China
SessionSPE-43: Speech Recognition 15: Robust Speech Recognition 1
LocationGather.Town
Session Time:Thursday, 10 June, 16:30 - 17:15
Presentation Time:Thursday, 10 June, 16:30 - 17:15
Presentation Poster
Topic Speech Processing: [SPE-ROBU] Robust Speech Recognition
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Recent researches on both utterance-level and phone-level prosody modelling successfully improve the voice quality and naturalness in text-to-speech synthesis. However, most of them model the prosody with a unimodal distribution such like a single Gaussian, which is not reasonable enough. In this work, we focus on phone-level prosody modelling where we introduce a Gaussian mixture model(GMM) based mixture density network. Our experiments on the LJSpeech dataset demonstrate that GMM can better model the phone-level prosody than a single Gaussian. The subjective evaluations suggest that our method not only significantly improves the prosody diversity in synthetic speech without the need of manual control, but also achieves a better naturalness. We also find that using the additional mixture density network has only very limited influence on inference speed.