2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDSPE-51.1
Paper Title TSTNN: TWO-STAGE TRANSFORMER BASED NEURAL NETWORK FOR SPEECH ENHANCEMENT IN THE TIME DOMAIN
Authors Kai Wang, Bengbeng He, Wei-Ping Zhu, Concordia University, Canada
SessionSPE-51: Speech Enhancement 7: Single-channel Processing
LocationGather.Town
Session Time:Friday, 11 June, 13:00 - 13:45
Presentation Time:Friday, 11 June, 13:00 - 13:45
Presentation Poster
Topic Speech Processing: [SPE-ENHA] Speech Enhancement and Separation
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract In this paper, we propose a transformer-based architecture, called two-stage transformer neural network (TSTNN) for end-to-end speech denoising in the time domain. The proposed model is composed of an encoder, a two-stage transformer module (TSTM), a masking module and a decoder. The encoder maps input noisy speech into feature representation. The TSTM exploits four stacked two-stage transformer blocks to efficiently extract local and global information from the encoder output stage by stage. The masking module creates a mask which will be multiplied with the encoder output. Finally, the decoder uses the masked encoder feature to reconstruct the enhanced speech. Experimental results on the benchmark dataset show that the TSTNN outperforms most state-of-the-art models in time or frequency domain while having significantly lower model complexity.