2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDAUD-8.3
Paper Title DBNET: DOA-DRIVEN BEAMFORMING NETWORK FOR END-TO-END REVERBERANT SOUND SOURCE SEPARATION
Authors Ali Aroudi, University of Oldenburg, Germany; Sebastian Braun, Microsoft Corporation, United States
SessionAUD-8: Audio and Speech Source Separation 4: Multi-Channel Source Separation
LocationGather.Town
Session Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Poster
Topic Audio and Acoustic Signal Processing: [AUD-SEP] Audio and Speech Source Separation
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Many deep learning techniques are available to perform source separation and reduce background noise. However, designing an end-to-end multi-channel source separation method using deep learning and conventional acoustic signal processing techniques still remains challenging. In this paper we propose a direction-of-arrival-driven beamforming network (DBnet) consisting of direction-of-arrival (DOA) estimation and beamforming layers for end-to-end source separation. We propose to train DBnet using loss functions that are solely based on the distances between the separated speech signals and the target speech signals, without a need for the ground-truth DOAs of speakers. To improve the source separation performance, we also propose end-to-end extensions of DBnet which incorporate post masking networks. We evaluate the proposed DBnet and its extensions on a very challenging dataset, targeting realistic far-field sound source separation in reverberant and noisy environments. The experimental results show that the proposed extended DBnet using a convolutional-recurrent post masking network outperforms state-of-the-art source separation methods.