2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDHLT-12.6
Paper Title Multi-Step Spoken Language Understanding System based on Adversarial Learning
Authors Yu Wang, Yilin Shen, Hongxia Jin, Samsung Research America, United States
SessionHLT-12: Language Understanding 4: Semantic Understanding
LocationGather.Town
Session Time:Thursday, 10 June, 13:00 - 13:45
Presentation Time:Thursday, 10 June, 13:00 - 13:45
Presentation Poster
Topic Human Language Technology: [HLT-MLMD] Machine Learning Methods for Language
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Most of the existing spoken language understanding systems can perform only semantic frame parsing based on a single-round user query. They cannot take users' feedback to update/add/remove slot values through multiround interactions with users. In this paper, we introduce a novel multi-step spoken language understanding system based on adversarial learning that can leverage the multiround user's feedback to update slot values. We perform two experiments on the benchmark ATIS dataset and demonstrate that the new system can improve parsing performance by at least $2.5\%$ in terms of F1, with only one round of feedback. The improvement becomes even larger when the number of feedback rounds increases. Furthermore, we also compare the new system with state-of-the-art dialogue state tracking systems and demonstrate that the new interactive system can perform better on multiround spoken language understanding tasks in terms of slot- and sentence-level accuracy.