Paper ID | IVMSP-19.6 |
Paper Title |
FWB-NET: FRONT WHITE BALANCE NETWORK FOR COLOR SHIFT CORRECTION IN SINGLE IMAGE DEHAZING VIA ATMOSPHERIC LIGHT ESTIMATION |
Authors |
Cong Wang, Yan Huang, Yuexian Zou, Peking University, China; Yong Xu, South China University of Technology, China |
Session | IVMSP-19: Deraining and Dehazing |
Location | Gather.Town |
Session Time: | Thursday, 10 June, 13:00 - 13:45 |
Presentation Time: | Thursday, 10 June, 13:00 - 13:45 |
Presentation |
Poster
|
Topic |
Image, Video, and Multidimensional Signal Processing: [IVTEC] Image & Video Processing Techniques |
IEEE Xplore Open Preview |
Click here to view in IEEE Xplore |
Virtual Presentation |
Click here to watch in the Virtual Conference |
Abstract |
In recent years, single image dehazing deep models based on Atmospheric Scattering Model (ASM) have achieved remarkable results. But the dehazing outputs of those models suffer from color shift. Analyzing the ASM model shows that the atmospheric light factor (ALF) is set as a scalar which indicates ALF is constant for whole image. However, for images taken in real-world, the illumination is not uniformly distributed over whole image which brings model mismatch and possibly results in color shift of the deep models using ASM. Bearing this in mind, in this study, first, a new non-homogeneous atmospheric scattering model (NH-ASM) is proposed for improving image modeling of hazy images taken under complex illumination conditions. Second, a new U-Net based front white balance module (FWB-Module) is dedicatedly designed to correct color shift before generating dehazing result via atmospheric light estimation. Third, a new FWB loss is innovatively developed for training FWB-Module, which imposes penalty on color shift. In the end, based on NH-ASM and front white balance technology, an end-to-end CNN-based color-shift-restraining dehazing network is developed, termed as FWB-Net. Experimental results demonstrate the effectiveness and superiority of our proposed FWB-Net for dehazing on both synthetic and real-world images. |