2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDSPE-51.6
Paper Title TOWARDS AN ASR APPROACH USING ACOUSTIC AND LANGUAGE MODELS FOR SPEECH ENHANCEMENT
Authors Khandokar Md. Nayem, Donald S. Williamson, Indiana University, United States
SessionSPE-51: Speech Enhancement 7: Single-channel Processing
LocationGather.Town
Session Time:Friday, 11 June, 13:00 - 13:45
Presentation Time:Friday, 11 June, 13:00 - 13:45
Presentation Poster
Topic Speech Processing: [SPE-ENHA] Speech Enhancement and Separation
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Recent work has shown that deep-learning based speech enhancement performs best when a time-frequency mask is estimated. Unlike speech, these masks have a small range of values that better facilitate regression-based learning. The question remains whether neural-network based speech estimation should be treated as a regression problem. In this work, we propose to modify the speech estimation process, by treating speech enhancement as a classification problem in an ASR-style manner. More specifically, we propose a quantized speech prediction model that classifies speech spectra into a corresponding quantized class. We then train and apply a language-style model that learns the transition probabilities of the quantized classes to ensure more realistic speech spectra. We compare our approach against time-frequency masking approaches, and the results show that our quantized spectra approach leads to improvements.