2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDMLSP-42.4
Paper Title PRUNING OF CONVOLUTIONAL NEURAL NETWORKS USING ISING ENERGY MODEL
Authors Hojjat Salehinejad, Shahrokh Valaee, University of Toronto, Canada
SessionMLSP-42: Neural Network Pruning
LocationGather.Town
Session Time:Friday, 11 June, 11:30 - 12:15
Presentation Time:Friday, 11 June, 11:30 - 12:15
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-DEEP] Deep learning techniques
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Pruning is one of the major methods to compress deep neural networks. In this paper, we propose an Ising energy model within an optimization framework for pruning convolutional kernels and hidden units. This model is designed to reduce redundancy between weight kernels and detect inactive kernels/hidden units. Our experiments using ResNets, AlexNet, and SqueezeNet on CIFAR-10 and CIFAR-100 datasets show that the proposed method on average can achieve a pruning rate of more than 50% of the trainable parameters with approximately <10% and <5% drop of Top-1 and Top-5 classification accuracy, respectively.