2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDIVMSP-31.1
Paper Title POINTER NETWORKS FOR ARBITRARY-SHAPED TEXT SPOTTING
Authors Yi Zhang, Wei Yang, Zhenbo Xu, Yingjie Li, Zhi Chen, Liusheng Huang, University of Science and Technology of China, China
SessionIVMSP-31: Applications 3
LocationGather.Town
Session Time:Friday, 11 June, 14:00 - 14:45
Presentation Time:Friday, 11 June, 14:00 - 14:45
Presentation Poster
Topic Image, Video, and Multidimensional Signal Processing: [IVARS] Image & Video Analysis, Synthesis, and Retrieval
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Current text spotting methods perform text detection and text recognition separately. However, in complex scenes where bounding boxes of texts with various shapes are often overlapped, text detection becomes error-prone. By contrast, character detection is more non-ambiguous and easier to learn. In this paper, we present a highly efficient one-stage method named PointerNet for arbitrary-shaped text spotting. Unlike previous methods, PointerNet does not rely on text detection and opens a novel spotting-by-character-detection paradigm. In particular, to connect characters to texts, we propose a simple yet highly effective strategy named pointer that learns the 2D offset from the center of the current character to the center of the subsequent character. Evaluations demonstrate that our PointerNet achieves state-of-the-art performance and is more efficient than current methods (75ms vs. 133ms compared with FOTS). Our code will be publicly available.