2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDSPE-3.2
Paper Title PATNET : A PHONEME-LEVEL AUTOREGRESSIVE TRANSFORMER NETWORK FOR SPEECH SYNTHESIS
Authors Shiming Wang, Zhenhua Ling, University of Science and Technology of China, China; Ruibo Fu, Jiangyan Yi, Jianhua Tao, Institute of Automation, Chinese Academy of Sciences, China
SessionSPE-3: Speech Synthesis 1: Architecture
LocationGather.Town
Session Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Poster
Topic Speech Processing: [SPE-SYNT] Speech Synthesis and Generation
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Aiming at efficiently predicting acoustic features with high naturalness and robustness, this paper proposes PATNet, a neural acoustic model for speech synthesis using phoneme-level autoregression. PATNet accepts phoneme sequences as input and is built based on Transformer structure. PATNet adopts a duration model instead of attention mechanism for sequence alignment. The decoder of PATNet predicts multi-frame spectra within one phoneme in parallel given the predicted spectra of previous phonemes. Such phoneme-level autoregression enables PATNet to achieve higher inference efficiency than the models with frame-level autoregression, such as Transformer-TTS, and improves the robustness of acoustic feature prediction by utilizing phoneme boundaries explicitly. Experimental results show that the speech synthesized by PATNet obtained lower character error rate (CER) than Tacotron, Transfomer-TTS and FastSpeech when evaluated by a speech recognition engine. Besides, PATNet achieved 10 times faster inference speed than Transformer-TTS and significantly better naturalness than FastSpeech.