2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDIVMSP-12.3
Paper Title UNSUPERVISED STACKED CAPSULE AUTOENCODER FOR HYPERSPECTRAL IMAGE CLASSIFICATION
Authors Erting Pan, Yong Ma, Xiaoguang Mei, Fan Fan, Jiayi Ma, Wuhan University, China
SessionIVMSP-12: Image & Video Interpretation and Understanding
LocationGather.Town
Session Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Poster
Topic Image, Video, and Multidimensional Signal Processing: [IVARS] Image & Video Analysis, Synthesis, and Retrieval
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Since CapsNet shattered all previous records of algorithms for image recognition, the capsule's conception has attracted bright attention. It interprets an object by the geometrical arrangement of parts. We think it can be transferred to hyperspectral images. In a hyperspectral data cube, each pixel spectrum can be regarded as a continuous curve representing its inherent properties. In the spatial domain, there are various spatial distributions in different positions,and there is usually a specific structural relationship between adjacently distributed categories. Based on HSI data's aforementioned structural characteristics, combined with the stacked capsule autoencoder, we propose our model to achieve an unsupervised HSI classification. In our model, the ConvLSTM is employed to discover part capsules of HSI, and we utilize Set Transformer to encode relations among all parts and indicate object capsules. The decoders of both phases use Gaussian mixture models to reconstruct specific information. Experimental results of the Pavia Center dataset show the exceptional of our model.