Paper ID | MLSP-42.3 |
Paper Title |
TENSOR REORDERING FOR CNN COMPRESSION |
Authors |
Matej Ulicny, Trinity College Dublin, Ireland; Vladimir A. Krylov, Dublin City University, Ireland; Rozenn Dahyot, Trinity College Dublin, Ireland |
Session | MLSP-42: Neural Network Pruning |
Location | Gather.Town |
Session Time: | Friday, 11 June, 11:30 - 12:15 |
Presentation Time: | Friday, 11 June, 11:30 - 12:15 |
Presentation |
Poster
|
Topic |
Machine Learning for Signal Processing: [MLR-DEEP] Deep learning techniques |
IEEE Xplore Open Preview |
Click here to view in IEEE Xplore |
Virtual Presentation |
Click here to watch in the Virtual Conference |
Abstract |
We show how parameter redundancy in Convolutional Neural Network (CNN) filters can be effectively reduced by pruning in spectral domain. Specifically, the representation extracted via Discrete Cosine Transform (DCT) is more conducive for pruning than the original space. By relying on a combination of weight tensor reshaping and reordering we achieve high levels of layer compression with just minor accuracy loss. Our approach is applied to compress pretrained CNNs and we show that minor additional fine-tuning allows our method to recover the original model performance after a significant parameter reduction. We validate our approach on ResNet-50 and MobileNet-V2 architectures for ImageNet classification task. |