2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDSPE-2.1
Paper Title ADVANCING RNN TRANSDUCER TECHNOLOGY FOR SPEECH RECOGNITION
Authors George Saon, Zoltan Tueske, Daniel Bolanos, Brian Kingsbury, IBM Research AI, United States
SessionSPE-2: Speech Recognition 2: Neural transducer Models 2
LocationGather.Town
Session Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Poster
Topic Speech Processing: [SPE-LVCR] Large Vocabulary Continuous Recognition/Search
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract We investigate a set of techniques for RNN Transducers (RNN-Ts) that were instrumental in lowering the word error rate on three different tasks (Switchboard 300 hours, conversational Spanish 780 hours and conversational Italian 900 hours). The techniques pertain to architectural changes, speaker adaptation, language model fusion, model combination and general training recipe. First, we introduce a novel multiplicative integration of the encoder and prediction network vectors in the joint network (as opposed to additive). Second, we discuss the applicability of i-vector speaker adaptation to RNNTs in conjunction with data perturbation. Third, we explore the effectiveness of the recently proposed density ratio language model fusion for these tasks. Last but not least, we describe the other components of our training recipe and their effect on recognition performance. We report a 5.9% and 12.5% word error rate on the Switchboard and CallHome test sets of the NIST Hub5 2000 evaluation and a 12.7% WER on the Mozilla CommonVoice Italian test set.