Paper ID | IVMSP-27.1 |
Paper Title |
UNSUPERVISED AUDIO-VISUAL SUBSPACE ALIGNMENT FOR HIGH-STAKES DECEPTION DETECTION |
Authors |
Leena Mathur, Maja Matarić, University of Southern California, United States |
Session | IVMSP-27: Multi-modal Signal Processing |
Location | Gather.Town |
Session Time: | Friday, 11 June, 11:30 - 12:15 |
Presentation Time: | Friday, 11 June, 11:30 - 12:15 |
Presentation |
Poster
|
Topic |
Image, Video, and Multidimensional Signal Processing: [IVARS] Image & Video Analysis, Synthesis, and Retrieval |
IEEE Xplore Open Preview |
Click here to view in IEEE Xplore |
Virtual Presentation |
Click here to watch in the Virtual Conference |
Abstract |
Automated systems that detect deception in high-stakes situations can enhance societal well-being across medical, social work, and legal domains. Existing models for detecting high-stakes deception in videos have been supervised, but labeled datasets to train models can rarely be collected for most real-world applications. To address this problem, we propose the first multimodal unsupervised transfer learning approach that detects real-world, high-stakes deception in videos without using high-stakes labels. Our subspace-alignment (SA) approach adapts audio-visual representations of deception in lab-controlled low-stakes scenarios to detect deception in real-world, high-stakes situations. Our best unsupervised SA models outperform models without SA, outperform human ability, and perform comparably to a number of existing supervised models. Our research demonstrates the potential for introducing subspace-based transfer learning to model high-stakes deception and other social behaviors in real-world contexts with a scarcity of labeled behavioral data. |