Paper ID | SPE-1.2 |
Paper Title |
Cascaded encoders for unifying streaming and non-streaming ASR |
Authors |
Arun Narayanan, Tara N. Sainath, Ruoming Pang, Jiahui Yu, Chung-Cheng Chiu, Rohit Prabhavalkar, Ehsan Variani, Trevor Strohman, Google Inc., United States |
Session | SPE-1: Speech Recognition 1: Neural Transducer Models 1 |
Location | Gather.Town |
Session Time: | Tuesday, 08 June, 13:00 - 13:45 |
Presentation Time: | Tuesday, 08 June, 13:00 - 13:45 |
Presentation |
Poster
|
Topic |
Speech Processing: [SPE-LVCR] Large Vocabulary Continuous Recognition/Search |
IEEE Xplore Open Preview |
Click here to view in IEEE Xplore |
Virtual Presentation |
Click here to watch in the Virtual Conference |
Abstract |
End-to-end (E2E) automatic speech recognition (ASR) models, by now, have shown competitive performance on several benchmarks. These models are structured to either operate in streaming or non-streaming mode. This work presents cascaded encoders for building a single E2E ASR model that can operate in both these modes simultaneously. The proposed model consists of streaming and non-streaming encoders. Input features are first processed by the streaming encoder; the non-streaming encoder operates exclusively on the output of the streaming encoder. A single decoder then learns to decode either using the output of the streaming or the non-streaming encoder. Results show that this model achieves similar word error rates (WER) as a standalone streaming model when operating in streaming mode, and obtains 10% -- 27% relative improvement when operating in non-streaming mode. Our results also show that the proposed approach outperforms existing E2E two-pass models, especially on long-form speech. |