2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDSPE-28.1
Paper Title REDAT: Accent-Invariant Representation for End-to-End ASR by Domain Adversarial Training with Relabeling
Authors Hu Hu, Georgia Institute of Technology, United States; Xuesong Yang, Zeynab Raeesy, Jinxi Guo, Gokce Keskin, Harish Arsikere, Ariya Rastrow, Andreas Stolcke, Roland Maas, Amazon Alexa Speech, United States
SessionSPE-28: Speech Recognition 10: Robustness to Human Speech Variability
LocationGather.Town
Session Time:Wednesday, 09 June, 16:30 - 17:15
Presentation Time:Wednesday, 09 June, 16:30 - 17:15
Presentation Poster
Topic Speech Processing: [SPE-LVCR] Large Vocabulary Continuous Recognition/Search
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Accents mismatching is a critical problem for end-to-end ASR. This paper aims to address this problem by building an accent-robust RNN-T system with domain adversarial train- ing (DAT). We unveil the magic behind DAT and provide, for the first time, a theoretical guarantee that DAT learns accent- invariant representations. We also prove that performing the gradient reversal in DAT is equivalent to minimizing the Jensen-Shannon divergence between domain output distributions. Motivated by the proof of equivalence, we introduce reDAT, a novel technique based on DAT, which relabels data using either unsupervised clustering or soft labels. Experiments on 23K hours of multi-accent data show that DAT achieves competitive results over accent-specific baselines on both native and non-native English accents but up to 13% relative WER reduction on unseen accents; our reDAT yields further improvements over DAT by 3% and 8% relatively on non-native accents of American and British English.