2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDMLSP-23.4
Paper Title IMPROVING THE CLASSIFICATION OF RARE CHORDS WITH UNLABELED DATA
Authors Marcelo Bortolozzo, Rodrigo Schramm, Claudio R. Jung, UFRGS, Brazil
SessionMLSP-23: Applications in Music and Audio Processing
LocationGather.Town
Session Time:Wednesday, 09 June, 16:30 - 17:15
Presentation Time:Wednesday, 09 June, 16:30 - 17:15
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-MUSAP] Applications in music and audio processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract In this work, we explore techniques to improve performance for rare classes in the task of Automatic Chord Recognition (ACR). We first explored the use of the focal loss in the context of ACR, which was originally proposed to improve the classification of hard samples. In parallel, we adapted a self-learning technique originally designed for image recognition to the musical domain. Our experiments show that both approaches individually (and their combination) improve the recognition of rare chords, but using only self-learning with noise addition yields the best results.