2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDIVMSP-1.3
Paper Title DUAL-STREAM NETWORK BASED ON GLOBAL GUIDANCE FOR SALIENT OBJECT DETECTION
Authors Shuyong Gao, Qianyu Guo, Wei Zhang, Wenqiang Zhang, Fudan University, China; Zhongwei Ji, ZTE Corporation, China
SessionIVMSP-1: Object Detection 1
LocationGather.Town
Session Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Poster
Topic Image, Video, and Multidimensional Signal Processing: [IVCOM] Image & Video Communications
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract High-level features can help low-level features eliminate semantic ambiguity, which is crucial for obtaining the precise salient object. Some methods use high-level features to provide global guidance for some layers of the network. However, there remain several problems: (1) the global guidance has not been fully mined, which leads to its limited capacity; (2) the semantic gap between global guidance and low-level features is ignored, and simple merging methods will cause feature aliasing. To remedy the problems, we propose a dual-stream network based on global guidance with two plug-ins, global attention based multi-scale high-level feature extraction module (GAMS) to mine global guidance and scale adaptive global guidance module (SAGG) to seamlessly integrate the global guidance into each decoding layer. Comprehensive experiments on the five largest benchmark datasets demonstrate our method outperforms previous state-of-the-art methods by a large margin.