2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDMLSP-47.2
Paper Title A DNN AUTOENCODER FOR AUTOMOTIVE RADAR INTERFERENCE MITIGATION
Authors Shengyi Chen, Ruhr-Universität Bochum & HELLA GmbH & Co. KGaA, Germany; Jalal Taghia, Tai Fei, Uwe Kühnau, HELLA GmbH & Co. KGaA, Germany; Nils Pohl, Rainer Martin, Ruhr-Universität Bochum, Germany
SessionMLSP-47: Applications of Machine Learning
LocationGather.Town
Session Time:Friday, 11 June, 14:00 - 14:45
Presentation Time:Friday, 11 June, 14:00 - 14:45
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-APPL] Applications of machine learning
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract In this paper, a novel interference mitigation approach using an autoencoder in combination with a traditional interference detection filter is introduced. It is shown that by employing the gated convolution, the encoder has the ability to learn the signal pattern from the remaining interference-free signal. The decoder can recover the interference-contaminated signal segments from the bottleneck representation as computed by the encoder. Experimental results show that the proposed method can provide a remarkable improvement in signal-to-interference-plus-noise ratio (SINR) and preserves its robustness on real radar measurements in severely disturbed scenarios that are more complex than the training dataset.