2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDBIO-12.3
Paper Title SHAPELET BASED VISUAL ASSESSMENT OF CLUSTER TENDENCY IN ANALYZING COMPLEX UPPER LIMB MOTION
Authors Shreyasi Datta, University of Melbourne, Australia; Chandan Karmakar, Deakin University, Australia; Punit Rathore, Massachusetts Institute of Technology, United States; Marimuthu Palaniswami, University of Melbourne, Australia
SessionBIO-12: Feature Extraction and Fusion for Biomedical Applications
LocationGather.Town
Session Time:Friday, 11 June, 11:30 - 12:15
Presentation Time:Friday, 11 June, 11:30 - 12:15
Presentation Poster
Topic Biomedical Imaging and Signal Processing: [BIO] Biomedical signal processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract The evolution of ubiquitous sensors has led to the generation of copious amounts of waveform data. Human motion waveform analysis has found significance in clinical and home-based activity monitoring. Exploration of cluster structure in such waveform data prior to developing learning models is an important pattern recognition problem. A prominent category of algorithms in this direction, known as Visual Assessment of (cluster) Tendency (VAT), employs visual approaches to study cluster evolution through heat maps. This paper proposes shape-iVAT, a new relative of an improved VAT model, that captures local time-series characteristics through representative subsequences, known as shapelets, to identify interesting patterns in motion data. We propose an unsupervised method for shapelet extraction using maximin shape sampling and shape-based distance computation for selecting key shapelets representing characteristic motion patterns. These shapelets are used to transform waveform data into a dissimilarity matrix for VAT evaluation. We demonstrate that the proposed method outperforms standard VAT with global distance measures for identifying complex upper limb motion captured using a camera-based motion sensing device. We also show that our method has significance in efficient and interpretable cluster tendency assessment for anomaly detection and continuous motion monitoring.