Paper ID | ASPS-2.1 |
Paper Title |
SEIZURE DETECTION USING POWER SPECTRAL DENSITY VIA HYPERDIMENSIONAL COMPUTING |
Authors |
Lulu Ge, Keshab K. Parhi, University of Minnesota, United States |
Session | ASPS-2: Algorithm/Architecture Co-design |
Location | Gather.Town |
Session Time: | Tuesday, 08 June, 16:30 - 17:15 |
Presentation Time: | Tuesday, 08 June, 16:30 - 17:15 |
Presentation |
Poster
|
Topic |
Applied Signal Processing Systems: Signal Processing Hardware [DIS-PROG, DIS-MLTC, DIS-SOCP] |
IEEE Xplore Open Preview |
Click here to view in IEEE Xplore |
Virtual Presentation |
Click here to watch in the Virtual Conference |
Abstract |
Hyperdimensional (HD) computing holds promise for classifying two groups of data. This paper explores seizure detection from electroencephalogram (EEG) from subjects with epilepsy using HD computing based on power spectral density (PSD) features. Publicly available intra-cranial EEG(iEEG) data collected from 4 dogs and 8 human patients in the Kaggle seizure detection contest are used in this paper. This paper explores two methods to classification. First, few ranked PSD features from small number of channels from a prior classification are used in the context of HD classification. Second, all PSD features extracted from all channels are used as features for HD classification. It is shown that for about half the subjects small number features outperform all features in the context of HD classification, and for the other half, all features outperform small number of features. HD classification achieves above 95% accuracy for six of the 12 subjects, and between 85-95% accuracy for 4 subjects. For two subjects, the classification accuracy using HD computing is not as good as classical approaches such as support vector machine classifiers. |