2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDSPTM-4.2
Paper Title PROVABLY FAST ASYNCHRONOUS AND DISTRIBUTED ALGORITHMS FOR PAGERANK CENTRALITY COMPUTATION
Authors Yiran He, Hoi-To Wai, The Chinese University of Hong Kong, Hong Kong SAR China
SessionSPTM-4: Estimation, Detection and Learning over Networks 2
LocationGather.Town
Session Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Poster
Topic Signal Processing Theory and Methods: Signal Processing over Networks
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract This paper considers the PageRank centrality computation problem on large graphs. We study asynchronous and distributed algorithms which are operated by aggregating information from local neighbors iteratively. Unlike prior works which rely on stochastic gradient descent (SGD) applied on a least square objective, we derive a stochastic approximation (SA) scheme for solving the PageRank problem by discretizing a linear system of ordinary differential equations. Our approach results in a family of asynchronous and distributed algorithms applicable for fixed and random topologies. Convergence rates are analyzed for both settings. In the fixed topology setting, we prove that the SA-based PageRank algorithm converges faster than the prior SGD-based method for large graphs. Numerical experiments support our findings.