2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDMMSP-6.1
Paper Title MULTI-GRANULARITY FEATURE INTERACTION AND RELATION REASONING FOR 3D DENSE ALIGNMENT AND FACE RECONSTRUCTION
Authors Lei Li, Xiangzheng Li, Kangbo Wu, Kui Lin, Suping Wu, Ningxia University, China
SessionMMSP-6: Human Centric Multimedia 2
LocationGather.Town
Session Time:Thursday, 10 June, 14:00 - 14:45
Presentation Time:Thursday, 10 June, 14:00 - 14:45
Presentation Poster
Topic Multimedia Signal Processing: Emerging Areas in Multimedia
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract In this paper, we propose a multi-granularity feature interaction and relation reasoning network (MFIRRN) which can recover a detail-rich 3D face and perform more accurate dense alignment in an unconstrained environment. Traditional 3DMM-based methods directly regress parameters, resulting in the lack of fine-grained details in the reconstruction 3D face. To this end, we use different branches to capture discriminative features at different granularities, especially local features at medium and fine granularities. Meanwhile, the finer-grained branch network shares its information with the adjacent coarser-grained branch network to achieve feature interaction. Our model performs cross-granular information integration and inter-granular relationship reasoning to obtain prediction results. Extensive experiments on AFLW2000-3D and AFLW datasets demonstrate the validity of our method. The code is publicly available at https://github.com/leilimaster/MFIRRN.