2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDSPTM-20.6
Paper Title LEARNING MIXTURES OF SEPARABLE DICTIONARIES FOR TENSOR DATA: ANALYSIS AND ALGORITHMS
Authors Mohsen Ghassemi, Zahra Shakeri, Anand Sarwate, Waheed Bajwa, Rutgers University, United States
SessionSPTM-20: Signal Processing over Graphs and Sparsity-Aware Signal Processing
LocationGather.Town
Session Time:Friday, 11 June, 11:30 - 12:15
Presentation Time:Friday, 11 June, 11:30 - 12:15
Presentation Poster
Topic Signal Processing Theory and Methods: [SMDSP-SAP] Sparsity-aware Processing
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract This work addresses the problem of learning sparse representations of tensor data using structured dictionary learning. It proposes learning a mixture of separable dictionaries to better capture the structure of tensor data by generalizing the separable dictionary learning model. Two different approaches for learning mixture of separable dictionaries are explored and sufficient conditions for local identifiability of the underlying dictionary are derived in each case. Moreover, computational algorithms are developed to solve the problem of learning mixture of separable dictionaries in both batch and online settings. Numerical experiments are used to show the usefulness of the proposed model and the efficacy of the developed algorithms.