2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDMLSP-7.3
Paper Title RANK-REVEALING BLOCK-TERM DECOMPOSITION FOR TENSOR COMPLETION
Authors Athanasios Rontogiannis, National Observatory of Athens, Greece; Paris Giampouras, Johns Hopkins University, United States; Eleftherios Kofidis, University of Piraeus, Greece
SessionMLSP-7: Tensor Signal Processing
LocationGather.Town
Session Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-TNSR] Tensor-based signal processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract The so-called block-term decomposition (BTD) tensor model has been recently receiving increasing attention due to its enhanced ability of representing systems and signals that are composed of \emph{blocks} of rank higher than one, a scenario encountered in numerous and diverse applications. In this paper, BTD is employed for the completion of a tensor from its partially observed entries. A novel method is proposed, which is based on the idea of imposing column sparsity jointly on the BTD factors and in a hierarchical manner. This way the number of block terms and their ranks can also be estimated, as the numbers of factor columns of non-negligible magnitude. Following a block successive upper bound minimization (BSUM) approach with appropriate choice of the surrogate majorizing functions is shown to result in an alternating hierarchical iteratively reweighted least squares (HIRLS) algorithm, which is fast converging and enjoys high computational efficiency, as it relies in its iterations on small-sized sub-problems with closed-form solutions. Simulation results with both synthetic and real data are reported, which demonstrate the effectiveness of the proposed scheme.