Paper ID | SPE-17.4 |
Paper Title |
SPEAKER ACTIVITY DRIVEN NEURAL SPEECH EXTRACTION |
Authors |
Marc Delcroix, NTT Corporation, Japan; Katerina Zmolikova, Brno University of Technology, Czechia; Tsubasa Ochiai, Keisuke Kinoshita, Tomohiro Nakatani, NTT Corporation, Japan |
Session | SPE-17: Speech Enhancement 3: Target Speech Extraction |
Location | Gather.Town |
Session Time: | Wednesday, 09 June, 14:00 - 14:45 |
Presentation Time: | Wednesday, 09 June, 14:00 - 14:45 |
Presentation |
Poster
|
Topic |
Speech Processing: [SPE-ENHA] Speech Enhancement and Separation |
IEEE Xplore Open Preview |
Click here to view in IEEE Xplore |
Virtual Presentation |
Click here to watch in the Virtual Conference |
Abstract |
Target speech extraction, which extracts the speech of a target speaker in a mixture given auxiliary speaker clues, has recently received increased interest. Various clues have been investigated such as pre-recorded enrollment utterances, direction information, or video of the target speaker. In this paper, we explore the use of speaker activity information as an auxiliary clue for single-channel neural network-based speech extraction. We propose a speaker activity driven speech extraction neural network (ADEnet) and show that it can achieve performance levels competitive with enrollment-based approaches, without the need for pre-recordings. We further demonstrate the potential of the proposed approach for processing meeting-like recordings, where speaker activity obtained from a diarization system is used as a speaker clue for ADEnet. We show that this simple yet practical approach can successfully extract speakers after diarization, which leads to improved ASR performance when using a single microphone, especially in high overlapping conditions, with relative word error rate reduction of up to 25 %. |