2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDSPE-23.1
Paper Title META-LEARNING FOR LOW-RESOURCE SPEECH EMOTION RECOGNITION
Authors Suransh Chopra, MIDAS, IIIT-Delhi, India; Puneet Mathur, University of Maryland, College Park, United States; Ramit Sawhney, MIDAS, IIIT-Delhi, India; Rajiv Ratn Shah, MIDAS, IIIT Delhi, India
SessionSPE-23: Speech Emotion 1: Speech Emotion Recognition
LocationGather.Town
Session Time:Wednesday, 09 June, 15:30 - 16:15
Presentation Time:Wednesday, 09 June, 15:30 - 16:15
Presentation Poster
Topic Speech Processing: [SPE-ANLS] Speech Analysis
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract While emotion recognition is a well-studied task, it remains unexplored to a large extent in cross-lingual settings. Speech Emotion Recognition (SER) in low-resource languages poses difficulties as existing approaches for knowledge transfer do not generalize seamlessly. Probing the learning process of generalized representations across languages, we propose a meta-learning approach for low-resource speech emotion recognition. The proposed approach achieves fast adaptation on a number of unseen target languages simultaneously. We evaluate the Model Agnostic Meta-Learning (MAML) algorithm on three low-resource target languages - Persian, Italian, and Urdu. We empirically demonstrate that our proposed method - MetaSER, considerably outperforms multitask and transfer learning-based methods for speech emotion recognition task, and discuss the benefits, efficiency, and challenges of MetaSER on limited data settings.