2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDSS-6.5
Paper Title LEARNING TO SELECT FOR MIMO RADAR BASED ON HYBRID ANALOG-DIGITAL BEAMFORMING
Authors Zhaoyi Xu, Rutgers, the State University of New Jersey, United States; Fan Liu, University College London, United Kingdom; Konstantinos Diamantaras, International Hellenic University, Greece; Christos Masouros, University College London, United Kingdom; Athina Petropulu, Rutgers, the State University of New Jersey, United States
SessionSS-6: Intelligent Sensing and Communications for Emerging Applications
LocationGather.Town
Session Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Poster
Topic Special Sessions: Intelligent Sensing and Communications for Emerging Applications
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract In this paper, we propose an energy-efficient radar beampattern design framework for a Millimeter Wave (mmWave) massive multi-input multi-output (mMIMO) system, equipped with a hybrid analog-digital (HAD) beamforming structure. Aiming to reduce the power consumption and hardware cost of the mMIMO system, we employ a machine learning approach to synthesize the probing beampattern based on a small number of RF chains and antennas. By leveraging a combination of softmax neural networks, the proposed solution is able to achieve a desirable beampattern with high accuracy.