2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPE-25.2
Paper Title CopyPaste: An Augmentation Method for Speech Emotion Recognition
Authors Raghavendra Pappagari, Jesús Villalba, Piotr Zelasko, Laureano Moro-Velázquez, Najim Dehak, Johns Hopkins University, United States
SessionSPE-25: Speech Emotion 3: Emotion Recognition - Representations, Data Augmentation
LocationGather.Town
Session Time:Wednesday, 09 June, 15:30 - 16:15
Presentation Time:Wednesday, 09 June, 15:30 - 16:15
Presentation Poster
Topic Speech Processing: [SPE-ANLS] Speech Analysis
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Data augmentation is a widely used strategy for training robust machine learning models. It partially alleviates the problem of limited data for tasks like speech emotion recognition (SER), where collecting data is expensive and challenging. This study proposes CopyPaste, a perceptually motivated novel augmentation procedure for SER. Assuming that the presence of emotions other than neutral dictates a speaker’s overall perceived emotion in a recording, concatenation of an emotional (emotion E) and a neutral utterance can still be labeled with emotion E. We hypothesize that SER performance can be improved using these concatenated utterances in model training. To verify this, three CopyPaste schemes are tested on two deep learning models: one trained independently and another using transfer learning from an x-vector model, a speaker recognition model. We observed that all three CopyPaste schemes improve SER performance on all the datasets considered: MSP-Podcast, Crema-D, and IEMOCAP. Additionally, CopyPaste performs better than noise augmentation and, using them together improves the SER performance further. Our experiments on noisy test sets suggested that CopyPaste is effective even in noisy test conditions.