2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPTM-1.3
Paper Title Robust estimation of high-order phase dynamics using Variational Bayes inference
Authors Fabio Fabozzi, Stéphanie Bidon, ISAE-SUPAERO, Université de Toulouse, France; Sébastien Roche, Airbus Defence and Space SAS, France
SessionSPTM-1: Detection Theory and Methods 1
LocationGather.Town
Session Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Poster
Topic Signal Processing Theory and Methods: [SSP] Statistical Signal Processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Cycle slips strongly impact the performance of any phase tracking system leading to, in the worst case, a permanent loss of lock of the signal. In this paper, we propose a new nonlinear phase estimator to obtain more robust tracks. The latter stems from a Variational Bayes (VB) approximation used within the optimal Bayesian filtering formulation in case of high-order phase dynamics. A comparison with a more conventional technique, namely a Kalman filter based PLL (Phase Lock Loop), is performed in terms of mean square error of the phase estimate and mean time to first slip. Results show that the proposed method outperforms the conventional linear filter with respect to both metrics, especially at low signal-to-noise ratio.