2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDHLT-4.2
Paper Title IMPROVING DIALOGUE RESPONSE GENERATION VIA KNOWLEDGE GRAPH FILTER
Authors Yanmeng Wang, Ye Wang, Xingyu Lou, Ping An Technology, China; Wenge Rong, Beihang University, China; Zhenghong Hao, Shaojun Wang, Ping An Technology, China
SessionHLT-4: Dialogue Systems 2: Response Generation
LocationGather.Town
Session Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Poster
Topic Human Language Technology: [HLT-DIAL] Discourse and Dialog
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Current generative dialogue systems tend to produce generic dialog responses, which lack useful information and semantic coherence. An promising method to alleviate this problem is to integrate knowledge triples from knowledge base. However, current approaches mainly augment Seq2Seq framework with knowledge-aware mechanism to retrieve a large number of knowledge triples without considering specific dialogue context, which probably results in knowledge redundancy and incomplete knowledge comprehension. In this paper, we propose to leverage the contextual word representation of dialog post to filter out irrelevant knowledge with an attention-based triple filter network. We introduce a novel knowledge-enriched framework to integrate the filtered knowledge into the dialogue representation. Entity copy is further proposed to facilitate the integration of the knowledge during generation. Experiments on dialogue generation tasks have shown the proposed framework's promising potential.