2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-2.1
Paper Title HOW CONVOLUTIONAL NEURAL NETWORKS DEAL WITH ALIASING
Authors Antonio H. Ribeiro, Thomas B. Schön, Uppsala University, Sweden
SessionMLSP-2: Deep Learning Training Methods 2
LocationGather.Town
Session Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-DEEP] Deep learning techniques
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract The convolutional neural network (CNN) remains an essential tool in solving computer vision problems. Standard convolutional architectures consist of stacked layers of operations that progressively downscale the image. Aliasing is a well-known side-effect of downsampling that may take place: it causes high-frequency components of the original signal to become indistinguishable from its low-frequency components. While downsampling takes place in the max-pooling layers or in the strided-convolutions in these models, there is no explicit mechanism that prevents aliasing from taking place in these layers. Due to the impressive performance of these models, it is natural to suspect that they, somehow, implicitly deal with this distortion. The question we aim to answer in this paper is simply: ``how and to what extent do CNNs counteract aliasing?'' We explore the question by means of two examples: In the first, we assess the CNNs capability of distinguishing oscillations at the input, showing that the redundancies in the intermediate channels play an important role in succeeding at the task; In the second, we show that an image classifier CNN while, in principle, capable of implementing anti-aliasing filters, does not prevent aliasing from taking place in the intermediate layers.