2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-1.5
Paper Title ENSEMBLE DISTILLATION APPROACHES FOR GRAMMATICAL ERROR CORRECTION
Authors Yassir Fathullah, Mark J. F. Gales, Cambridge University, United Kingdom; Andrey Malinin, Yandex, Russia
SessionMLSP-1: Deep Learning Training Methods 1
LocationGather.Town
Session Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-DEEP] Deep learning techniques
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Ensemble approaches are commonly used techniques to improving a system by combining multiple model predictions. Additionally these schemes allow the uncertainty, as well as the source of the uncertainty, to be derived for the prediction. Unfortunately these benefits come at a computational and memory cost. To address this problem ensemble distillation (EnD) and more recently ensemble distribution distillation (EnDD) have been proposed that compress the ensemble into a single model, representing either the ensemble average prediction or prediction distribution respectively. This paper examines the application of both these distillation approaches to a sequence prediction task, grammatical error correction (GEC). This is an important application area for language learning tasks as it can yield highly useful feedback to the learner. It is, however, more challenging than the standard tasks investigated for distillation as the prediction of any grammatical correction to a word will be highly dependent on both the input sequence and the generated output history for the word. The performance of both EnD and EnDD are evaluated on both publicly available GEC tasks as well as a spoken language task.