2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPTM-22.6
Paper Title A GENERALIZED ACCELERATED COMPOSITE GRADIENT METHOD: UNITING NESTEROV'S FAST GRADIENT METHOD AND FISTA
Authors Mihai I. Florea, Sergiy A. Vorobyov, Aalto University, Finland
SessionSPTM-22: Signal Processing Theory and Methods
LocationGather.Town
Session Time:Friday, 11 June, 13:00 - 13:45
Presentation Time:Friday, 11 June, 13:00 - 13:45
Presentation Poster
Topic Signal Processing Theory and Methods: [SMDSP] Sampling, Multirate Signal Processing and Digital Signal Processing
Abstract Large-scale convex optimization problems can be efficiently addressed using the Fast Gradient Method (FGM) and the Fast Iterative Shrinkage Thresholding Algorithm (FISTA). FGM requires that the objective be finite and differentiable with a known gradient Lipschitz constant whereas FISTA can be applied to composite objectives and features line-search. Nonetheless, FISTA cannot increase the step size and is unable to take advantage of strong convexity. FGM and FISTA are very similar in form but appear to have vastly differing convergence analyses. In this work we unite the two analyses. We generalize the previously introduced augmented estimate sequence framework as well as the related notion of the gap sequence. We use our tools to construct a Generalized Accelerated Composite Gradient Method that encompasses FGM and FISTA, along with their most popular variants. The Lyapunov property of the generalized gap sequence used in deriving our method implies that both FGM and FISTA are amenable to a Lyapunov analysis. Moreover, our method features monotonically decreasing objective function values alongside a versatile line-search procedure and is thus able to surpass both FGM and FISTA in robustness and usability. We support our findings with simulation results on an extensive benchmark of composite problems.