2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-47.4
Paper Title NNAKF: A NEURAL NETWORK ADAPTED KALMAN FILTER FOR TARGET TRACKING
Authors Sami Jouaber, Mines ParisTech/Thales LAS, France; Silvère Bonnabel, Mines ParisTech/UNC, France; Santiago Velasco-Forero, Mines ParisTech, France; Marion Pilté, Thales LAS, France
SessionMLSP-47: Applications of Machine Learning
LocationGather.Town
Session Time:Friday, 11 June, 14:00 - 14:45
Presentation Time:Friday, 11 June, 14:00 - 14:45
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-APPL] Applications of machine learning
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract An adaptive three-dimensional Kalman filter for the tracking of maneuvering targets in three dimensions is proposed. In the radar industry, numerous trackers are based on a constant velocity model, with a process noise covariance matrix Q which is adapted to enhance tracking: it is kept at moderate values during straight lines where the constant velocity assumption applies and is increased during maneuvers. In the present paper we advocate a novel method to increase Q (and hence the Kalman gains) based on a recurrent neural network (RNN). The difficulty and the interest of our approach lies in the fact the neural network is trained together with the filter, by backpropagation through the filter, and hence learns the covariance matrix such as to directly maximize the accuracy of the final output.