2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPE-31.6
Paper Title CIF-BASED COLLABORATIVE DECODING FOR END-TO-END CONTEXTUAL SPEECH RECOGNITION
Authors Minglun Han, Linhao Dong, Shiyu Zhou, Bo Xu, Institute of Automation, Chinese Academy of Sciences, China
SessionSPE-31: Speech Recognition 11: Novel Approaches
LocationGather.Town
Session Time:Thursday, 10 June, 13:00 - 13:45
Presentation Time:Thursday, 10 June, 13:00 - 13:45
Presentation Poster
Topic Speech Processing: [SPE-LVCR] Large Vocabulary Continuous Recognition/Search
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract End-to-end (E2E) models have achieved promising results on multiple speech recognition benchmarks, and shown the potential to become the mainstream. However, the unified structure and the E2E training hamper injecting context information into them for contextual biasing. Though contextual LAS (CLAS) gives an excellent all-neural solution, the degree of biasing to given contextual information is not explicitly controllable. In this paper, we focus on incorporating contextual information into the continuous integrate-and-fire (CIF) based model that supports contextual biasing in a more controllable fashion. Specifically, an extra context processing network is introduced to extract contextual embeddings, integrate acoustically relevant contextual information and decode the contextual output distribution, thus forming a collaborative decoding with the decoder of the CIF-based model. Evaluated on the named entity rich evaluation sets of HKUST/AISHELL-2, our method brings relative character error rate (CER) reduction of 8.83%/21.13% and relative named entity character error rate (NE-CER) reduction of 40.14%/51.50% when compared with a strong baseline. Besides, it keeps the performance on original evaluation set without degradation.