2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-2.5
Paper Title Elliptical Shape Recovery from Blurred Pixels using Deep Learning
Authors Hojatollah Zamani, Peyman Rostami, Arash Amini, Farokh Marvasti, Sharif University of Technology, Iran
SessionMLSP-2: Deep Learning Training Methods 2
LocationGather.Town
Session Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-DEEP] Deep learning techniques
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract In this paper, we study the problem of ellipse recovery from blurred shape images. A shape image is a continuous-domain black and white (binary-valued) image in which the points of the same color form a shape. We assume to have a digitized version of the shape image which is a sampled and blurred version of the image using a $2$D kernel (the point spread function); the resulting pixels may also be corrupted by additive noise. Our goal in this work is to recover the original continuous-domain image based on the available pixels when the shape image is an ellipse. Our approach is to represent an ellipse as the zero-level-set of a bivariate polynomial of degree $2$ and estimate the involved $6$ polynomial coefficients based on a deep neural network. Our model is trained end to end on a wide range of blurring setups with varying noise levels. Besides, the network is trained to recover the ellipse even when the available noisy pixels cover only a part of the ellipse. Simulation results validate the performance of the proposed method and indicate its superiority compared to the state of art methods.