2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-39.4
Paper Title Towards Adversarial Robustness via Compact Feature Representations
Authors Muhammad Shah, Raphael Olivier, Bhiksha Raj, Carnegie Mellon University, United States
SessionMLSP-39: Adversarial Machine Learning
LocationGather.Town
Session Time:Friday, 11 June, 11:30 - 12:15
Presentation Time:Friday, 11 June, 11:30 - 12:15
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-DEEP] Deep learning techniques
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Deep Neural Networks (DNNs), while providing state-of-the-art performance in a wide variety of tasks, have been shown to be vulnerable to adversarial attacks. A popular hypothesis is that DNNs are vulnerable because they operate over a grossly overspecified input space with very sparse human supervision due to which DNNs tend to use spurious input features that humans tend to ignore. This makes the latter a likely attack vector for the adversary. It is reasonable to expect that reducing the size of the feature representation in a way that does not harm generalization would discard spurious features before discarding perceptually relevant features. To explore this hypothesis, we take non-robust pretrained models, use existing and novel techniques to shrink the feature representation in various ways, and then evaluate the robustness of the models using an array of popular adversarial attack methods. We find that after the size of the feature representation has been reduced, the models do become more robust to adversarial attacks. In addition to being more robust, models with compact feature representations have the benefit of being more resource efficient.