2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSS-4.3
Paper Title An Improved Data Driven Dynamic SIRD model for Predictive Monitoring of COVID-19
Authors Pushpendra Singh, National Institute of Technology Hamirpur, India; Amit Singhal, Bennett University, India; Binish Fatimah, CMR Institute of Technology, India; Anubha Gupta, Indraprastha Institute of Information Technology, India
SessionSS-4: Data Science Methods for COVID-19
LocationGather.Town
Session Time:Tuesday, 08 June, 16:30 - 17:15
Presentation Time:Tuesday, 08 June, 16:30 - 17:15
Presentation Poster
Topic Special Sessions: Data Science Methods for COVID-19
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract COVID-19 pandemic spread across the world in early 2020. It forced many countries to impose lockdown to prevent surge in the number of infected cases. There has been a huge impact on social and economic activities worldwide. In this work, we carry out the functional modeling of COVID-19 infection trends using two models: the Gaussian mixture model (GMM) and the composite logistic growth model (CLGM). Unlike the traditional SIRD models that use numerical data fitting, we utilize the best data-fitted curves employing GMM and/or CLGM to construct the Susceptible-Infected-Recovered-Dead (SIRD) pandemic model. Further, we derive the explicit expressions of time-varying parameters of the SIRD model unlike most works that consider static parameters without any closed form solution. The proposed parameterized dynamic SIRD model is generically applicable to any pandemic, can capture the day-to-day dynamics of the pandemic and can assist the governing bodies in devising efficient action plans to deal with the prevailing pandemic.