2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPE-21.2
Paper Title FINE-TUNING OF PRE-TRAINED END-TO-END SPEECH RECOGNITION WITH GENERATIVE ADVERSARIAL NETWORKS
Authors Md. Akmal Haidar, Mehdi Rezagholizadeh, Huawei Noah's Ark Lab, Canada
SessionSPE-21: Speech Recognition 7: Training Methods for End-to-End Modeling
LocationGather.Town
Session Time:Wednesday, 09 June, 15:30 - 16:15
Presentation Time:Wednesday, 09 June, 15:30 - 16:15
Presentation Poster
Topic Speech Processing: [SPE-LVCR] Large Vocabulary Continuous Recognition/Search
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Adversarial training of end-to-end (E2E) ASR systems using generative adversarial networks (GAN) has recently been explored for low-resource ASR corpora. GANs help to learn the true data representation through a two-player min-max game. However, training an E2E ASR model using a large ASR corpus with a GAN framework has never been explored, because it might take excessively long time due to high-variance gradient updates and face convergence issues. In this paper, we introduce a novel framework for fine-tuning a pre-trained ASR model using the GAN objective where the ASR model acts as a generator and a discriminator tries to distinguish the ASR output from the real data. Since the ASR model is pre-trained, we hypothesize that the ASR model output (soft distribution vectors) helps to get higher scores from the discriminator and makes the task of the discriminator harder within our GAN framework, which in turn improves the performance of the ASR model in the fine-tuning stage. Here, the pre-trained ASR model is fine-tuned adversarially against the discriminator using an additional adversarial loss. Experiments on full LibriSpeech dataset show that our proposed approach outperforms baselines and conventional GAN-based adversarial models.