2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPE-23.3
Paper Title EMOTION RECOGNITION BY FUSING TIME SYNCHRONOUS AND TIME ASYNCHRONOUS REPRESENTATIONS
Authors Wen Wu, Chao Zhang, Phil Woodland, University of Cambridge, United Kingdom
SessionSPE-23: Speech Emotion 1: Speech Emotion Recognition
LocationGather.Town
Session Time:Wednesday, 09 June, 15:30 - 16:15
Presentation Time:Wednesday, 09 June, 15:30 - 16:15
Presentation Poster
Topic Speech Processing: [SPE-ANLS] Speech Analysis
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract In this paper, a novel two-branch neural network model structure is proposed for multimodal emotion recognition, which consists of a time synchronous branch (TSB) and a time asynchronous branch (TAB). In order to capture the correlations between each word and its acoustic realisations, TSB couples the speech and text modalities at each time step in an input window and performs pooling across time to form a single embedding vector. TAB, on the other hand, provides cross-utterance information by integrating the sentence embeddings of a number of context utterances into another embedding vector. The final classification of the emotion is performed based on the fusion of TSB and TAB embeddings. Experimental results on the IEMOCAP dataset demonstrated that the two-branch structure achieved state-of-the-art results in 4-way classification with all common testing setups. When using real automatic speech recognition (ASR) output hypotheses instead of the references as the text information, it is shown the cross-utterance information considerably improves the robustness against ASR errors. Further by incorporating an extra class for all the other emotions, our final 5-way classification system with ASR outputs can be viewed as a prototype towards more realistic emotion recognition systems.